Monatshefte für Chemie 107, 95-103 (1976) $© by Springer-Verlag 1976$

Schiff Base Complexes of Dioxouranium (VI), III. Commun.: **I)ioxouranimn(VI) Complexes of Bibasic Tetradentate** *Schiff* **Bases**

By

Ram G. Vijay and Jagdish P. Tandon

Chemical Laboratories, University of Rajasthan, Jaipur, India

With 1 Figure

(Received June 14, 1975)

Bibasic tetradentate *Schit/* bases having the donor s ystem $OH-MX-NX-OH$ have been shown to form $UO₂(NO₃)₂(SBH₂)$ type of derivatives [SBH₂ is the molecule of the bibasic tetradentate *Sehi/]* bases such as HOC6H4C(R) : : $N(CH_2)_nN$: $C(R)C_6H_4OH$ (where $R = H$ or CH_3 and $n = 2$) 3) and $HOC(R'): CHC(CH_3): N(CH_2)_nN: C(CH_3)CH:$ $\mathcal{C}(\mathbb{R}')\text{OH}$ (where $\mathbb{R}' = \text{CH}_3$ or C_6H_5 and $n = 2$ or 3). The 1:1 stoichiometry of these complexes is shown by elemental analysis and conductometric titrations. The molar conduetence values in nitrobenzene indicate the non-electrolytic behaviour and the magnetic susceptibility measurements by the Gouy method show these complexes to be diamagnetic.

Introduction

Dioxouranium(VI) complexes of bibasic tetradentate *Schiff* bases of the type $UO_2(SB)$ [where SB^{-2} is the dianion of the *Schiff* base, bis(salicylidene) ethylenediamine and bis(o-hydroxyacetophenone) ethylenediimine] were first reported by *Pfeiffer* et al.¹ in 1937, *Poddar* et al.² as well as Pasini et al. 3 described the synthesis of heptaco-ordinated adducts of the type $UO_2(SB)L$ (where L is the solvent molecule such as ethanol, pyridine, *DMF* etc.} and in these complexes the anions of the *Schiff* base molecules are coordinated to the central uranium atom.

In previous communications^{4, 5} from these laboratories, dioxouranium(VI) complexes of monobasic bidentate and bibasic tridentate *Schiff* bases were reported. In this paper we report the synthesis and important properties of the *Schi/]* base complexes of bibasic tetradentate *Schiff* bases (I and II):

It may be noted that in these complexes, the molecules and not the anions of the *Schi/]* base are coordinated with the central metal ion as in many other dioxouranium complexes^{$1-3$} reported earlier.

Experimental

Materials: Absolute ethanol, acetone (Merck), dimethylformamide *(DMF)*, nitrobenzene were purified as reported earlier^{4, 5}. Dioxouranium(VI) nitrate hexahydrate (B.D.I-I.) was used without further purification.

Preparation el Schi]] Bases

The *Schiff* bases used in these reactions were prepared by the condensation of aldehyde with amine in the requisite amount as reported earlier $s-s$. These were crystallized before use in ethanol or water as indicated in table 1.

Synthesis of Dioxouranium (VI)-Schiff Base Complexes

These were synthesized by adding a calculated amount of the *Schiff* base in acetone and/or ethanol to the dioxouranium(VI) nitrate hexahydrate in the same solvent. The yellow orange solid, which separated out was collected by filtration, washed with acetone and/or ethanol and dried in vacuo. The details of synthesis and physical characteristics of the complexes are recorded in table 2.

Analyses and Physical Measurements

Uranium and nitrogen were estimated as described earlier^{4, 5}. Carbon and hydrogen were estimated by Australian microanalytical services, Australia.

The magnetic susceptibility at the room temperature $(30 \pm 1 \degree C)$ in the solid state was measured by tho *Gouy* method. Melting points were determined in sealed tubes (Table 2).

Infrared spectra were recorded in Nujol mulls and KBr optics with a Perkin-Ehner 337 grating infra red spectrophotometer in the 4,000 to 400 cm^{-1} region.

Molar conductance measurements were made in nitrobenzene and *DMF* at 30 \pm 1 °C using a Tesla RLC.

Results and Discussion

Schiff base dioxouranium(VI) complexes, which are isolated as yellow to orange solids, are mostly insoluble in organic solvents such as

	Schiff base*	Recryst.	Colour	M.P., ∘∩
1.	Bis-(salicylidene)ethylene-			
	diamine, $C_{16}H_{16}N_2O_2$	EtOH	yellow	$138 - 140$
2.	Bis-(salicylidene)-1,3-propylene-			
	diamine, $C_{17}H_{18}N_2O_2$	EtOH	yellow	$52 - 53$
3.	Bis-(o-hydroxyacetophenone)-			
	ethylenediimine, $C_{18}H_{20}N_2O_2$	EtOH	vellow	$182 - 190$
4.	Bis-(o-hydroxyacetophenone)-1,3-			
	propylenediimine, $C_{19}H_{22}N_2O_2$	EtOH	yellow	128–130
5.	$\operatorname{Bis-}(2,4\text{-pentanedione})\text{-ethylene-}$			
	diimine, $C_{12}H_{20}N_2O_2$	water	straw	116–118
6.	Bis - $(2,4$ -pentanedione)-1.3-			
	propylenediimine, $C_{13}H_{22}N_2O_2$	water	straw	$46 - 47$
7.	Bis-(benzoylacetone)-ethylene-			
	diimine, $C_{22}H_{24}N_{2}O_{2}$	EtOH	white	180-181
8.	Bis-(benzovlacetone)-1,3-			
	propylenediimine, $C_{23}H_{26}N_2O_2$	EtOH	white	$108 - 110$

Table 1. *Sehi//Bases*

* Formulas checked by CH and N determination.

acetone, ethanol and benzene. These are stable against light and atmosphere and decompose at ≈ 200 °C. All these have been found to be diamagnetic and their magnetic susceptibility measurements are recorded in table 3.

Due to the presence of the donor system $HO-NX-NX-OH$, these *Schiff* bases offer four possible sites of coordination and the resulting 1 : 1 Schiff base complexes may be structurally represented as indicated below :

(where $HO-NX-NX$ —OH represents the *Schiff* base molecule).

Monatshefte für Chemie, $Bd. 107/1$ 7

Table 2. Reactions of Dioxouranium (VI) mitrate hexahydrate with the bibasic tetradentate Schiff base in 1:1 molar ratio Table 2. *Reactions el Dioxouranium (VI) nitrate hexahydrate with the bibasic tetradentate Schi]] base in 1 : 1 molar ratio*

 \ast Composition ascertained by analysis (U, N). * Composition ascertained by analysis (U, N).

R. G. Vijay and Jagdish P. Tandon:

Conductance Measurements

The stoichiometry of these complexes is also confirmed by conductometric titrations of the *Schiff* base with dioxouranium(VI) nitrate hexahydrate in acetone and/or ethanol medium (Fig. 1). Only one sharp bend corresponding to the 1 : 1 molar ratio has been obtained and this suggests the formation of $UO_2(NO_3)_2(SBH_2)$ types of derivatives. Conductometrie titrations of the *Schi//* bases derived from o-hydroxyacetophenone, and dioxonranium(VI) nitrate hexahydrate could not be

	Compound	Molar Conduc- tance in $\rm (ohm^{-1}cm^2)$ $_{\rm mole^{-1}}$		Magnetic Susceptibility	
				Specific	Molar susceptibility susceptibility
		Nitro- benzene	DMF	$-\chi_{\rm s}\times 10^{-6}$ (c.g.s.)	$-\chi_{\rm m} \times 10^{-6}$ (c.g.s.)
1.	$UO_2(NO_3)_2(C_{16}H_{16}N_2O_2)$	0.74	129.3	0.1203	79.7
2.	$UO_2NO_3)_2(C_{17}H_{18}N_2O_2)$	2.33	121.0	0.1310	88.6
3.	$UO_{2}(NO_{3})_{2}(C_{18}H_{20}N_{2}O_{2})$	1.27	135.2	0.2058	142.1
4.	$UO_2(NO_3)_2(C_{19}H_{22}N_2O_2)$	2.52	142.3	0.2100	148.0
5.	$UO_2(NO_3)_2(C_{12}H_{20}N_2O_2)$	1.84	128.7	0.1328	82.1
6.	$UO_{2}(NO_{3})_{2}(C_{13}H_{22}N_{2}O_{2})$	4.30	135.3	0.1350	85.4
7.	$UO_{2}(NO_{3})_{2}(C_{22}H_{24}N_{2}O_{2})$	5.9	145.8	0.1790	132.9
8.	$\mathrm{UO_{2}(NO_{3})_{2}(C_{23}H_{26}N_{2}O_{2})}$	4.64	140.6	0.1822	137.8

Table 3. Some Physico-chemical Properties of Schiff Base Complexes of *Dioxouranium (VI)*

successfully carried out due to the appearence of a solid phase during the titration and also due to the very little change in the conductivity before the equilibrium point. These reactions can be represented by the following equations :

$$
HOC_6H_4C(R) = N(CH_2)_nN = C(R)C_6H_4OH + UO_2(NO_3)_2 \cdot 6 H_2O
$$

\n
$$
[HOC_6H_4C(R) = N(CH_2)_nN = C(R)C_6H_4OH]UO_2^{+2}(NO_3)_2
$$

\n(where R = H or CH₃ and n = 2 or 3).

 $HOC(R') = CHC(CH_3) = N(CH_2)_nN = C(CH_3)CH = C(R')OH + UO_2(NO_3)_2$. $9 \cdot 6 \text{ H}_2\text{O} \xrightarrow{--\bullet} [\text{HOC}(\text{R}')] = \text{CHC}(\text{CH}_3) = \text{N}(\text{CH}_2)_n\text{N} = \text{C}(\text{CH}_3)\text{CH} = \text{C}(\text{R}')\text{OH}]\text{UO}_2 + 2.$ \cdot (NO₃)₂

(where $\rm R' = CH_3$ or $\rm C_6H_5$ and $n = 2$ or 3).

Molar conductance values of the resulting complexes in nitrobenzene $(10^{-3}M)$ have been found to be below 6 ohm⁻¹ cm² mole⁻¹ and thus

Fig. 1. Conductometric titrations of *Schiff* bases with dioxouranium(VI) nitrate hexahydrate. (a) Bis- $(2, 4$ -pentanedione) ethylene diimine $(0.025M)$ dioxouranium(VI) nitrate hexahydrate $(0.5M)$ in ethanol. (b) Bis- $(2,4$ pentanedione)-1,3-propylene diimine $(0.0125M)$ -dioxouranium(VI) nitrate hexahydrate $(0.25M)$ in acetone. (c) Bis-(salicylidene) ethylene diamine $(0.0125M)$ -dioxouranium(VI) nitrate hexahydrate $(0.25M)$ in acetone. (d) Bis-(salicylidene)-1,3-propylene diamine $(0.025M)$ -dioxouranium(VI) nitrate hexahydrate $(0.5M)$ in acetone. (e) Bis-(benzoyl acetone)-1,3nitrate hexahydrate $(0.5M)$ in acetone. propylene diimine $(0.0125M)$ -dioxouranium(VI) nitrate hexahydrate $(0.25M)$ in acetone

showing non-electrolytic behaviour. However, the conductance values of these complexes in DMF are in the range of 120 to 150 ohm⁻¹ cm² mole^{-1}, which correspond nearly to $1:2$ electrolyte. This shows that a co-ordinated solvent like \overline{DMF} is able to displace the weakly co-ordinated nitrate group as reported earlier 4, 9 also.

In/ra-Red Spectra

The IR spectra of the *Sehi/]* bases and their corresponding dioxouranium(VI) derivatives have been recorded (Tab. 4) and the important features may be summarized as below:

(i) In the case of bibasic tetradentate *Sehi//* base, no absorption band appears beyond 3.150 cm^{-1} . On account of both types of hydrogen bonding intermolecular $(0-H... 0)$ as well as intramolecular $(0-H... N)$, the frequency of the hydrogen bonded OH is probably lowered to a considerable extent and overlaps with the v CH vibrations exhibiting a broad band in the region $3,150-2,950$ cm⁻¹. *Freedmann*¹⁰, has reported a similar absorption band in the region $2,800-2,600$ cm⁻¹ in the spectra of bis(salicylidene) ethylenediamine. However, in the resulting derivatives, a strong band is observed in the region $3,500-3,350$ cm⁻¹ and this may be assigned to the absorption band of the $\sqrt{9-H}$ or 9 N--H groups. This further shows that the molecules of the *Schi//* bases are coordinated to the central uranium atom and not to their anions.

(ii) A strong band at $\approx 1,620$ cm⁻¹ is observed in the *Schiff* bases, which may be assigned to the azomethine $(>C=N-)$ grouping. No appreciable shift in this band is observed on coordination to the uranium atom.

(iii) The infrared spectra of these complexes show two strong absorption peaks in 1,540-1,480 cm⁻¹ and $\approx 1,280$ cm⁻¹ region and a medium intensity peak in the $\approx 800 \,\mathrm{cm}^{-1}$ region and this may be assigned to the v_4 (NO₂ asymmetric stretching), v_1 (NO₂ symmetric stretching) and ν_6 (NO₂ deformation vibrations) of the coordinated nitrate group¹¹.

 (iv) The dioxouranium (VI) ion exhibits three vibrational frequencies: the symmetric (y_1) and asymmetric (y_3) stretching and a bending (y_2) frequency. In the present cases, only two bands in the region $950-900$ cm⁻¹ and $865-850$ cm⁻¹ are observed and these may be assigned to the y_3 and y_1 vibrations respectively. The band due to y_2 vibration could not be noted as it appears in the lower region.

The authors are thankful to Prof. *K. C. Joshi,* Head of the Chemistry Department, for providing the laboratory facilities. The financial assistance received by one of the authors *(RGV)* from C. S. I. R., New Delhi is gratefully acknowledged.

Ref erences

- *1 t). Pfeiffer, Th. Hesse, H. P/itzner, W. Scholl* und *H. Thielert,* J. prakt. Chem. 149, 217 (1937).
- ² S. N. Poddar, K. Dey, and S. C. Nathsarkar, J. Indian Chem. Soc. 40, 489 (1963).
- *8 A. Pasini, M. Gullotti,* and *E. Cesarrotti,* J. Inorg. Nucl. Chem. 34, 382i (1972).
- *R. G. Vijay* and *J. P. Tandon, J.* Inorg. Nuel. Chem. (in press.).
- $5 R. G. Vijay$ and *J. P. Tandon*, Z. Naturforsch. 30 b, 751 (1975).
- ⁶ K. L. Chawla, P. Prashar, and *J. P. Tandon*, J. Indian Chem. Soc. 49, 553 (1972).
- *R. N. Prasad* and *J. P. Tandon, J.* Inorg. Nucl. Chem. 36, 1473 (1974).
- ⁸ P.J. McCarthy, J. R. Hovey, Ueno, Keihei and *A. F. Martell*, J. Amer. Chem. Soc. 77, 5820 (1955).
- *9 S. S. Krishnamurthy* and *S. Soundararajan, J.* Inorg. Nucl. Chem. 28, 1689 (1966).
- ¹⁰ H. H. Freedmann, J. Amer. Chem. Soc. 83, 2900 (1961).
- *11 C. C. Addison* and *W. B. Simpson, J.* Chem. Soc. 1965, 598.

Correspondence and reprints : *Dr. J. P. Tandon Chemical Laboratories University o/Rajasthan IND-302004 Jaipur* 4 *India*